
CSCI1570 Design and Analysis of Algorithms Lorenzo De Stefani

Homework 9: Complexity Theory

Problem 1. Given an undirected graph G = (V,E) and a subset of its vertices V ′, the sub-graph
induced by V ′ is defined as G′ = (V ′, E′) where E′ includes all edges from E with both endpoints
in V ′ (that is E′ = (V ′ × V ′) ∩ E).

A set V ′′ ⊆ V is a vertex cover of G if all edges in E have at least one endpoint in V ′′. The
size of a vertex cover is the number of vertices in it. We say that V ′′ is a connected vertex cover if
the subgraph induced by V ′′ is connected.

The “k-connected vertex cover problem” (k-CONCOV) is a decision problem for which, given
as input an undirected graph G and a positive integer value k, we want to decide whether there
exists a connected vertex cover of G of size k or less.

(a) Present a deterministic algorithm for solving k-CONCOV. Your algorithm should run in
O
(
nk+2

)
worst-case time, where n is the number of vertices in the graph. Argue the cor-

rectness of your algorithm and analyze its running time.

(b) Prove that k-CONCOV ∈ NP .

Solution. 1. We claim that it suffices to only consider vertex covers of size k: indeed, if there
exists a vertex cover of size k′ < k, then appending k − k′ vertices to it does not change the
fact that it is a vertex cover, so we can always pad to make a cover of size k. With this in
mind, we can brute force the problem by considering every possible subset of k vertices: we
can, say, throw these k vertices into a set. Then, for each edge e, check if at least one of
the endpoint lies in the current set. If so, we have a vertex cover. To check if the graph is
connected, run a DFS on the induced subgraph.

This results in a runtime of O(V ) +O(E) +O(V +E) = O(V +E) ∈ O(n2) for checking if a
subset of k vertices is a connected vertex cover. The terms in order are constructing the set,
checking edges have endpoints that lie in the set (checking set inclusion is constant time),
and the DFS. We know this is in O(n2) since O(E) = O(V 2) = O(n2). It remains to compute
the number of vertices of size k: this is precisely(

n

k

)
=

n!

k!(n− k)!
≤ n!

(n− k)!
= n(n− 1) · · · (n− k + 1) ∈ O(nk)

The total runtime is now O(nk+2), as desired.

2. Suppose we non-deterministically produce a solution: we wish to verify this solution in poly-
nomial time. To do this, we can apply the exact same algorithm as in (a) for checking if
a subset of k vertices is a connected vertex cover. We already showed this is O(n2), so the
problem is in NP.
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Problem 2. Consider the languages:

TFSATk = {φ | φ is a Boolean formula in CNF with k elements in each clause.
There exists an assignment such that in each clause,
there is at least one true and one false literal}

Show that TFSAT4 is NP-complete.

Solution. We reduce TFSAT4 from 3SAT. Let φ be an input to 3SAT, and take any clause C =
(x1 ∨ x2 ∨ x3). Consider the following transformation f(C):

(x1 ∨ x2 ∨ x3 ∨ y)

Here, y is an auxiliary variable unique to f(C) in the transformed boolean formula. Note that
applying f to each clause in φ gives a boolean formula in CNF with 4 elements per clause. We
claim that if φ is a solution to 3SAT, f(φ) is a solution to TFSAT4: indeed, just take y as false,
since we are guaranteed to have at least one true in x1, x2, x3 (otherwise it would not satisfy 3SAT).

For the reverse direction, start with some satisfying assignment to f(φ): if y is false, then there
is at least one true among x1, x2, x3, so we can just use the same values for a satisfying assignment
to 3SAT. If y is true, then there is at least one false among x1, x2, x3. Then, ¬x1,¬x2,¬x3 must
have at least one true: we can then use this as our satisfying assignment to 3SAT. Having shown
both directions, we get TFSAT4 is NP-hard.

To show it is NP-complete, it suffices to show it is NP. Select some assignment nondeterminis-
tically: we can verify for each clause that there is at least one true or one false in linear time and
then evaluate the expression in linear time as well. Therefore, we have a deterministic, polynomial
time verifier, proving TFSAT4 ∈ NP .
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Problem 3. Consider the languages:

EX1SAT = {φ | φ is a satisfiable Boolean formula in CNF with exactly 1 literal true per clause}

Show that EX1SAT is NP-complete.

Solution. We want to first reduce 3SAT to EX1SAT. Let φ be an input to 3SAT. Let us take any
arbitrary clause in φ, say containing (x1 ∨ x2 ∨ x3). Then we create 6 new sets of variables with
the following expression: (a1 ∨ a2 ∨ a3) ∧ (¬x1 ∨ a1 ∨ b1) ∧ (¬x2 ∨ a2 ∨ b2) ∧ (¬x3 ∨ a3 ∨ b3). Here,
ai and bi are variables not used elsewhere in φ. We do this for every clause, each time using 6 new
variables to make φ′. We want to show that φ ∈ 3SAT =⇒ φ′ ∈ EX1SAT . If φ ∈ 3SAT , at least
one of x1, x2, and x3 were true. WLOG assume x1 was true. Then, there are 3 cases for the other
2 variables. In case 1, both x2 and x3 are false. Then we set a1 = T , and the other 5 variables as
F. In case 2, exactly one of x2 and x3 is true. WLOG assume x2 was true. Then we set a1, b2 = T
and the other 4 variables as F. In case 3 all 3 variables are T and we set a1, b2, b3 = T and the other
3 variables as F. We see by plugging these values in that in each case, exactly one literal from each
clause is T. Thus, φ′ ∈ EX1SAT .

Now we want to show φ′ ∈ EX1SAT =⇒ φ ∈ 3SAT . For each set of 4 clauses, we identify
which of a1 to a3 are T. WLOG assume a1 is T. But then x1 has to be T to avoid two literals being
true in (¬x1 ∨ a1 ∨ b1), making the (x1 ∨ x2 ∨ x3) clause true in φ. Thus, we are able to construct
a satisfying assignment for 3SAT. This means we have successfully reduced 3SAT to EX1SAT in
polynomial time.

Lastly, we need to show EX1SAT is in NP. We can nondeterminstically choose a truth as-
signment for the variables, and accept if one literal is true per clause. This takes polynomial
time to check, so EX1 is in NP. Since it is reducable from 3SAT it is also NP-Hard, making it
NP-Complete.
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