
CSCI1570 Design and Analysis of Algorithms Lorenzo De Stefani

Homework 8: Pattern Matching &
Computational Geometry

Problem 1. In the fuzzy pattern-matching problem given a text T and a pattern P constructed
using symbols from an alphabet Σ, we are looking to verify if the pattern P appears in the text T .
However, we are accepting as valid matches occurrences of P in T for which, at most, one character
is mismatched. E.g, let T = aaaaaabd and P = abc, there is a fuzzy match of P in T for abd with
at most one mismatch.

1. Show how to modify the Rabin-Karp algorithm for this problem:

• The initialization should require almost at most c1|Σ||P | time where c is a constant value
with respect to |P |, T , and |Σ|.

• Besides for the initialization phase, the algorithm should run in the expected time c|T |,
where c is a constant values with respect to |P |, T , and |Σ|. You can assume a constant
number of collisions with high probability.

Overall, the expected running time of your algorithm should be O (|Σ||P |+ |T |). NOTE: You
cannot assume |Σ| to be constant with respect to |P | and |T |.

2. Prove the correctness of your algorithm.

3. Analyze the worst-case running time of your algorithm

Solution. The idea here is to make use of the fact that we know our pattern at initialization time.
Therefore, we can compute every possible fuzzy match and store these hashes in a set (or some
other expected constant-time lookup data structure). When we need to search for a match in a text
T , we can simply run a modified version of Rabin-Karp where instead of looking for hash equality,
we check to see if the hash of the current substring is in the set of pre-computed hashes.

Therefore, the initialization phase is O(|Σ||P |), since for each mismatch there are |Σ| choices.
Looking up the hash can be done in constant time, so the expected runtime post initialization is
the same as Rabin-Karp: O(|T |). This gives the overall expected runtime is O(|Σ||P |+ |T |). The
worst case scenario is when we run into collisons, resulting in brute force checks. The runtime for
this is O(|Σ||P |+ |T ||P |).

Pattern Matching & Computational Geometry 1 Fall 2024

CSCI1570 Design and Analysis of Algorithms Lorenzo De Stefani

Problem 2. Lorenzo is mixing paint for his house. Since his favorite color is green he’s mixing
some blue paint and yellow paint together with some paint thinner. He’s managed to create n
different shades of green with all the blue and yellow paint that he has.

For example, suppose he made three different shades of green.

Samples

%
C

om
po

un
d S1 S2 S3

Yellow 0.7 0.3 0.1

Blue 0.2 0.1 0.7

Paint Thinner 0.1 0.6 0.2

Then it is possible to produce a shade of green that is 35% yellow and 27.5% blue by mixing the
shades he currently has in a 1 : 2 : 1 ratio (25% S1, 50% S2, 25% S3). However, it is impossible
to create the shade of green which is 20% yellow and 10% blue.

Design an O(n log n) algorithm that checks whether it’s possible to create a liquid with the
specified percentage of yellow and blue. Argue the correctness of your algorithm.

Example Input: [(0.7, 0.2), (0.3, 0.1), (0.1, 0.7)], (0.35, 0.275)
Output: True

Hint: What is this nonsense about paint colors? I wonder! I guess possible ratios of Yellow and
Blue used to obtain the n shades of green look like coordinates of points on the plane... :)

Solution. Algorithm

Algorithm 1 Paint Mixing
procedure PointInclusion(P, q)

xMax ← p.x ∈ P such that p.x is maximal
horizonalSegment ← (q, (xMax, q.y))
E ← {}
for i in range(0, S.size()) do

j ← (i+ 1) mod S.size()
E.append((S[i], S[j]))

intersectingEdges ← E.filter(e => Intersect(horizontalSegment, e))
return intersectingEdges.size().isOdd()

procedure Mixable(S, l)
S.sort(OrientationComparator)
GrahamScan(S)
return PointInclusion(S, l)

Correctness: The algorithm checks to see if a certain shade of paint is mixable by checking to
see if it is contained in the convex hull formed by the original shades of paint. Let C = {v1, · · · , vm}
denote the convex hull of the original shades of paint. Notice that a shade is only mixable if and

Pattern Matching & Computational Geometry 2 Fall 2024

CSCI1570 Design and Analysis of Algorithms Lorenzo De Stefani

only if it can be represented as a linear combination a1v1 + · · · + amvm where a1 + · · · + am = 1,
i.e. a convex combination of v1, · · · , vm. One can think of each ai as the percentage of the shade vi
used to create the mixed shade. By the hint, the convex hull is the set of all convex combinations
of the original n shades and thus every mixable paint is an element of the convex hull and every
point in the convex hull represents a mixable paint.

Runtime: We begin by preforming an O(n log n) sort on the original set of paints. We then
preform the Graham scan on this set of paints to form the convex hull, which is done in O(n) time.
Finally, we check to see if the input shade is contained within the convex hull using point inclusion.
Determining the maximum x coordinate in our convex hull requires a linear scan of the hull which
in the worst case contains O(n) points. We can create the horizontal segment for the point we are
checking in constant time and extract all the edges from our convex hull in linear time. Finally,
filtering the set of edges to determine the number of intersections with our horizontal line segment
also requires O(n) time. In total checking if a point is included in the convex hull requires at worst
O(n) operations. Thus, the overall algorithm requires O(n log n) time where we are limited by time
required to preform our original sort.

Pattern Matching & Computational Geometry 3 Fall 2024

CSCI1570 Design and Analysis of Algorithms Lorenzo De Stefani

Problem 3. Aditya is building a fence for his farm to protect against the invading squirrels.
He plans on using fence posts with positions given by Q = [q0, q1, . . . , qn−1], which are sorted in
counterclockwise order with respect to q0. Every fence post should be used as part of the resulting
fence or contained entirely within it. To ensure he could always go to and from any place on his
farm at the minimum distance possible, he constructed his fence in the shape of a convex polygon.

A year after building the fence, Aditya wants to add in a new fence post with position p.
Describe a linear time algorithm that Aditya can use to modify his fence to include p (either as
part of the fence or contained entirely within it) so that it still contains all the fence posts in Q.
Show that your proposed algorithm is correct and analyze its running time.

Solution. First, use the standard point inclusion algorithm to check if p is contained in the current
convex hull: if this is the case, we are done. If not, determine where p is in the counterclockwise
order with respect to q0 by iterating through Q and checking orientation. Now that we have the
sorted order, we can apply the Graham Scan to get the new convex hull.

The runtime of this algorithm is O(n): applying point inclusion is O(n), checking where p is in the
counterclockwise is just a linear time loop through the list, and the Graham Scan is O(n).

Pattern Matching & Computational Geometry 4 Fall 2024

