
CSCI1570 Design and Analysis of Algorithms Lorenzo De Stefani

Homework 6: Data Structures
Due: October 31st, 2024

Problem 1. You’re an announcer at the hottest rock-paper-scissors competition in North America.
The biggest match of the evening is coming up, Rocky Rick vs. Paper Pete, and you need make
sure the audience stays engaged during the event. For past announcers, the biggest obstacle is
keeping the audience engaged during the halftime show (the players need time to rest their hands).

In order to step things up, you’re planning to do something that has never been done before
and want to be able to say that this is the nth time that the score between Rocky Rick and and
Paper Pete has been i to j at halftime. The main challenge that has prevented previous announcers
from doing this is that you won’t know what i and j are, as the game has not yet happened. You
also cannot afford to scan through the entire list of previous halftime scores between Rick and Pete
and count the number of i vs j appearances as the audience would surely revolt.

1. Devise an efficient method of processing the list of previous Rick-Pete halftime scores before
their match begins, so that you can quickly say, right at the start of half-time, how many
times the pair (i, j) has occurred at similar moments in the past. Your pre-match processing
should take time proportional to the number of previous games and the querying task should
take constant time.

2. Justify the runtime and correctness of your scheme.

Solution. 1. We can maintain the frequency of each half time score (i, j) into a hash map imple-
menting chaining, using some hash function that depends on values i and j. Assuming we have
a hash function that disperses the data in the table with sufficient evenness, operations insert
and get would have an expected time of O(1).

i. When inserting a new score into the hash map, we can set its value to 1. When inserting a
score that has already appeared into the hash map, we can increment its value.

ii. When querying a score that is not in the hash map, we can return null or throw an error,
indicating that this a score that has not been witnessed in previous games.

Note that this scheme is expected time O(1) because in a hash table, we have a worst case
scenario where all numbers are mapped to a single slot in the map, in which case all elements
would be in one chain. The run time of our algorithm would then no longer be constant.

2. i. By inserting the half time score of each previous game into the hash table, we are executing
a constant operation with every previous game, meaning the processing phase takes time
proportional to the number of previous games.

ii. Because we assume we have an adequate hash function such that get is constant, querying
should be a constant time operation.

iii. The correctness of the algorithm follows from the hash map holding exactly the frequency
of the key (i, j), since we increment each time we encounter it.

Data Structures 1 Fall 2024



CSCI1570 Design and Analysis of Algorithms Lorenzo De Stefani

Problem 2. There are n marbles rolling along a straight one-lane track. They each are at some
distance (in inches) away from the start of the track (inch 0) and are all traveling to the end of the
track which is at inch end. You are given two arrays: position and speed. Both are of length n so
position[i] and speed[i] denote the starting position and speed of the ith marble, respectively. The
positions are given in inches and speeds are given in inches per second.

Since the track is narrow, marbles cannot roll pass other marbles: this means that when a faster
marble catches up to a slower marble, they will travel together at the speed of the slower marble.
We can then define a group of marbles to be a set of marbles (of size at least 1) that reach the end
of the track at the same time. You are tasked with figuring out the number of groups of marbles
that arrive at the end of the track.

1. Devise an efficient method to find the number of groups of marbles we expect to see at the
end of track given their starting positions, speeds, and end.

2. Justify the runtime and correctness of your scheme.

Solution. 1. Consider the following algorithm:

Algorithm 1 Number of marble groups
Input: position, speed, end
Output: The number of marble groups at the end
1: function countMarbleGroups(position, speed, end)
2: groupLeaders ← stack
3: posSpeedPairs ← [] . Stores the pairs (position, speed)
4: for i in range(0, n) do
5: posSpeedPairs.append((position[i], speed[i]))
6: sort posSpeedPairs by the first key, in decreasing order
7: for i in range(0, n) do
8: if len(groupLeaders) == 0 then
9: groupLeaders.push(posSpeedPairs[i])

10: continue
11: currentLeader ← groupLeaders.top()
12: leaderEndTime ← (end - currentLeader[0]) / currentLeader[1]
13: marbleEndTime ← (end - posSpeedPairs[i][0]) / posSpeedPairs[i][1]
14: if leaderEndTime < marbleEndTime then
15: groupLeaders.push(posSpeedPairs[i]
16: return len(groupLeaders)

2. The idea is to maintain a stack of the leading marbles for each group. We process the marbles
from closest to end to closest to the start, and every time check if the current marble will reach
the end sooner / later than the group leaders. If it reaches later than all the current groups, it
is a new leader so we push to the stack.

To prove this is the case, a marble catches up and joins a group ahead of it if and only if it
is faster than the group. In this case, since we have a finite length track, this means that it

Data Structures 2 Fall 2024



CSCI1570 Design and Analysis of Algorithms Lorenzo De Stefani

would reach the end sooner than the group ahead of it assuming no obstructions. If it does not
catch up, then it itself must become a new group leader. Therefore, new group leaders arise by
processing the marbles by largest position to smallest.

The top of the stack will always have the closest marble group to the current marble: indeed,
we only ever add in a leader if it never reaches the marbles already processed in front of it,
meaning it will always lag behind. As a result, the top of the stack is the closest group to the
current marble. Comparing end times is a matter of using d = r · t (d is distance, r is rate, t
is time), which is what happens in lines 12 to 14. Again, if the current marble reaches the end
after the closest group, it itself must be a new leader since it will never reach the closest group.
This shows our algorithm works as intended.

The runtime of this algorithm is O(n log n): this comes from the sorting at the start. The for
loops all have constant time operations (e.g. append, push, top), so they all run in O(n), giving
a runtime of O(n log n) +O(n) = O(n log n).

Data Structures 3 Fall 2024


