Solution 5: Divide & Conquer

Problem 1. The recurrence $T(n) = 7T(n/2) + n^2$ describes the running time of an algorithm A. A competing algorithm A' has a running time of $T'(n) = aT'(n/4) + n^2$. What is the largest integer value for a such that A' is asymptotically faster than A ?

Solution. The answer is $a = 48$. By Master Theorem, we know that we land in Case 1 for the first recurrence, so $T(n) = \Theta(n^{\log_2 7})$. For the second recurrence, we consider each of the 3 cases:

1. We land in case 1 if $2 < \log_4 a \iff a > 16$. Then, $T'(n) = \Theta(n^{\log_4 a})$. Thus, to be faster, we require

$$
\log_4 a < \log_2 7 \iff a < 49
$$

so the largest integer satisfying this case is $a = 48$ (which is consistent with the constraint $a > 16$.

- 2. To land in case 2, we require $a = 16$. Since this is less than the solution we found in case 1, this case cannot give us our answer.
- 3. Again, to land in case 3, we need $a < 16$ but this is less than the solution found in case 1.

Having exhausted all the cases, we are done.

 \Box

Problem 2. The Euclidean algorithm is a method for computing the greatest common divisor (gcd) of two numbers, taking advantage of the fact

$$
\gcd(a, b) = \gcd(b, a - b)
$$

for positive integers a, b satisfying $a \geq b$. Consider the following variation:

$$
\gcd(a, b) = \begin{cases} 2 \gcd(a/2, b/2) & \text{if } a, b \text{ even} \\ \gcd(a, b/2) & \text{if } a \text{ odd } b \text{ even} \\ \gcd((a - b)/2, b) & \text{if } a, b \text{ odd} \end{cases}
$$

- a. Prove the variation is correct.
- b. Provide an algorithm that uses the variation to compute the greatest common divisor of two numbers a, b in $O(log(ab))$
- *Solution.* (a). We interpret $gcd(a, b) = d$ as the largest integer so that if $a = dx$ and $b = dy$, then, $gcd(x, y) = 1$. Handle each of the three cases separately:
	- 1. If d is not even, then x and y must be even, contradicting $gcd(x, y) = 1$. Therefore, we can write $a/2 = (d/2)x$ and $b/2 = (d/2)y$. This means that $gcd(a/2, b/2) = d/2 \implies$ $gcd(a, b) = 2 gcd(a/2, b/2).$
	- 2. If d is even, then this means $d \mid a \implies 2 \mid a$, contradiction. Thus, d is odd and we can write $b/2 = d(y/2)$. It remains to verify that $gcd(x, y/2) = 1$ given that $gcd(x, y) = 1$, but this is true because x, y share no common factors, so removing a factor of 2 from y won't change that fact. Thus, $gcd(a, b/2) = d = gcd(a, b)$.
	- 3. We use the standard Euclidean algorithm to get $gcd(a, b) = gcd(a b, b)$. Note that we now land in case 2 since $a - b$ even and b is odd, which immediately gives $gcd(a - b, b)$ $gcd((a - b)/2, b) \implies gcd(a, b) = gcd((a - b)/2, b).$
- (b). The algorithm is to run the variant Euclidean algorithm until one of a, b are 0 or 1: in the former case, return the nonzero value. Otherwise, return 1. A bound on the runtime is to note that one of a, b are halved at each step. Since we run the algorithm until at least one of the values is ≤ 1 , it will take in the worst case $\log_2 a + \log_2 b = \log(ab)$ steps. This shows the runtime is $O(log(ab))$.

 \Box

Problem 3. Given an *n*-bit binary integer, design a divide-and-conquer algorithm to convert it into its decimal representation. For simplicity, you may assume that n is a power of 2.

- 1. Provide a succinct (but clear) description of your algorithm, including pseudocode.
- 2. Prove the correctness of your algorithm.
- 3. Analyze the running time of your algorithm. Assume that it is possible to multiply two decimal integers numbers with at most m digits in $O(m^{\log_2 3})$ time.

Hint: An *n*-bit binary integer x can be expressed as $x = (x_{n-1}, x_{n-2}, \dots, x_1, x_0)_2$ where $x_i \in \{0,1\}$. Let $x_\ell = (x_{n/2-1}, x_{n/2-2}, \cdots, x_1, x_0)_2$ be the $(n/2)$ -bit binary integer corresponding to the $(n/2)$ least significant digits of x. Let $x_m = (x_{n-1}, x_{n-2}, \dots, x_{n/2+1}, x_{n/2})_2$ be the $(n/2)$ -bit binary integer representing the $(n/2)$ most significant digits of x. Then, $x = x_{\ell} + 2^{n/2} \cdot x_m$. This should suggest us a way to set up a divide and conquer strategy. . . :) Careful about the number of subproblems!

- *Solution.* 1. Using the hint, the idea is to split the n-bit integer into the first half and second half: call these $n/2$ -bit halves x and y, respectively. Then, we want to compute $2^{n/2}x + y$. Continue calling the algorithm on x, y until they are of 1-bit each, at which point we return the value itself.
	- 2. Clearly the base cases of length 1 work, since $0₂ = 0$ and $1₂ = 1$. It suffices to show that $x = 2^{n/2}x_l + x_r$ is correct, where x_l, x_r are as defined in the hint. Indeed, notice that

$$
x = (x_n, x_{n-1}, \dots, x_1)_2
$$

= $(x_n, \dots, x_{n/2+1}, 0, \dots, 0)_2 + (x_{n/2}, \dots, x_1)_2$
= $(x_n, \dots, x_{n/2} + 1, 0, \dots, 0)_2 + x_r$
= $2^{n/2}(x_n, \dots, x_{n/2+1})_2 + x_r$
= $2^{n/2}x_l + x_r$

since appending a zero to the end of a binary integer is equivalent to multiplying by 2 in decimal and there are $n/2$ zeros. Thus, the algorithm properly handles base cases and correctly combines the results from splitting.

3. Let $T(n)$ denote the number of operations needed for an n−bit binary integer. I claim that

$$
T(n) = 2T(n/2) + O(n^{\log_2 3})
$$

After splitting, the conversion of x_l and x_l into decimal clearly take $T(n/2)$ each, yielding the $2T(n/2)$ term. As for the combine step, it suffices to determine the runtime of multiplying $2^{n/2}$ by x_l , since addition is done in linear time, $O(n)$.

To compute $2^{n/2}$, we can, say, repeatedly square starting at 2. This requires squaring $\log_2(n/2) = O(\log n)$ times. Squaring is at worst multiplying two $n/4$ -bit integers (in decimal). In decimal, we have $\log_{10}(2^{n/4}) = n/4 \cdot \log_{10}(2) = O(n)$ digits, so multiplication takes $O(n^{\log_2 3})$ time. We do this for $n/8$, $n/16$, etc, so the runtime is

$$
O(n^{\log_2 3} + (n/2)^{\log_2 3} + \dots + 1) = O(n^{\log_2 3} + \frac{1}{3}n^{\log_2 3} + \frac{1}{9}n^{\log_2 3} + \dots)
$$

$$
= O\left(\frac{1}{1 - 1/3}n^{\log_2 3}\right)
$$

$$
= O(n^{\log_2 3})
$$

It remains to multiply $2^{n/2}$ and x_l . However, both are $n/2$ -bit integers, meaning the number of digits in the decimal representation of x_l and $2^{n/2}$ is

$$
O(\log_{10}(2^{n/2})) = O(n)
$$

Multiplying two decimal integers with at most m digits takes $O(m^{\log_2 3})$ time, and since each of x_l and $2^{n/2}$ have at most $O(n)$ digits, the multiplication takes $O(n^{\log_2 3})$ time. The recurrence relation becomes

$$
T(n) = 2T(n/2) + O(n^{\log_2 3}) + O(n^{\log_2 3}) = 2T(n/2) + O(n^{\log_2 3})
$$

We apply the Master theorem. Since $log_2(3) > log_2(2) = 1$, we have an instance of Case 3. Indeed, setting $\delta = 2/3$,

$$
\delta n^{\log_2 3} = \frac{2}{3} n^{\log_2 3} = 2 \frac{n^{\log_2 3}}{2^{\log_2 3}} = 2(n/2)^{\log_2 3} = 2f(n/2)
$$

as desired. By Master theorem, then, $T(n) = \Theta(n^{\log_2 3})$, which is our overall runtime.

 \Box