
CSCI1570 Design and Analysis of Algorithms Lorenzo De Stefani

Solution 5: Divide & Conquer

Problem 1. The recurrence T (n) = 7T (n/2) + n2 describes the running time of an algorithm A.
A competing algorithm A′ has a running time of T ′(n) = aT ′(n/4)+n2. What is the largest integer
value for a such that A′ is asymptotically faster than A?

Solution. The answer is a = 48. By Master Theorem, we know that we land in Case 1 for the first
recurrence, so T (n) = Θ(nlog2 7). For the second recurrence, we consider each of the 3 cases:

1. We land in case 1 if 2 < log4 a ⇐⇒ a > 16. Then, T ′(n) = Θ(nlog4 a). Thus, to be faster,
we require

log4 a < log2 7 ⇐⇒ a < 49

so the largest integer satisfying this case is a = 48 (which is consistent with the constraint
a > 16.

2. To land in case 2, we require a = 16. Since this is less than the solution we found in case 1,
this case cannot give us our answer.

3. Again, to land in case 3, we need a < 16 but this is less than the solution found in case 1.

Having exhausted all the cases, we are done.

Divide & Conquer 1 Fall 2024

CSCI1570 Design and Analysis of Algorithms Lorenzo De Stefani

Problem 2. The Euclidean algorithm is a method for computing the greatest common divisor
(gcd) of two numbers, taking advantage of the fact

gcd(a, b) = gcd(b, a− b)

for positive integers a, b satisfying a ≥ b. Consider the following variation:

gcd(a, b) =

2 gcd(a/2, b/2) if a, b even
gcd(a, b/2) if a odd b even
gcd((a− b)/2, b) if a, b odd

a. Prove the variation is correct.

b. Provide an algorithm that uses the variation to compute the greatest common divisor of two
numbers a, b in O(log(ab))

Solution. (a). We interpret gcd(a, b) = d as the largest integer so that if a = dx and b = dy, then,
gcd(x, y) = 1. Handle each of the three cases separately:

1. If d is not even, then x and y must be even, contradicting gcd(x, y) = 1. Therefore, we
can write a/2 = (d/2)x and b/2 = (d/2)y. This means that gcd(a/2, b/2) = d/2 =⇒
gcd(a, b) = 2 gcd(a/2, b/2).

2. If d is even, then this means d | a =⇒ 2 | a, contradiction. Thus, d is odd and we can
write b/2 = d(y/2). It remains to verify that gcd(x, y/2) = 1 given that gcd(x, y) = 1, but
this is true because x, y share no common factors, so removing a factor of 2 from y won’t
change that fact. Thus, gcd(a, b/2) = d = gcd(a, b).

3. We use the standard Euclidean algorithm to get gcd(a, b) = gcd(a − b, b). Note that we
now land in case 2 since a − b even and b is odd, which immediately gives gcd(a − b, b) =
gcd((a− b)/2, b) =⇒ gcd(a, b) = gcd((a− b)/2, b).

(b). The algorithm is to run the variant Euclidean algorithm until one of a, b are 0 or 1: in the
former case, return the nonzero value. Otherwise, return 1. A bound on the runtime is to
note that one of a, b are halved at each step. Since we run the algorithm until at least one of
the values is ≤ 1, it will take in the worst case log2 a+ log2 b = log(ab) steps. This shows the
runtime is O(log(ab)).

Divide & Conquer 2 Fall 2024

CSCI1570 Design and Analysis of Algorithms Lorenzo De Stefani

Problem 3. Given an n-bit binary integer, design a divide-and-conquer algorithm to convert it
into its decimal representation. For simplicity, you may assume that n is a power of 2.

1. Provide a succinct (but clear) description of your algorithm, including pseudocode.

2. Prove the correctness of your algorithm.

3. Analyze the running time of your algorithm. Assume that it is possible to multiply two
decimal integers numbers with at most m digits in O(mlog2 3) time.

Hint: An n-bit binary integer x can be expressed as x = (xn−1, xn−2, · · · , x1, x0)2 where
xi ∈ {0, 1}. Let x` = (xn/2−1, xn/2−2, · · · , x1, x0)2 be the (n/2)-bit binary integer corresponding to
the (n/2) least significant digits of x. Let xm = (xn−1, xn−2, · · · , xn/2+1, xn/2)2 be the (n/2)-bit
binary integer representing the (n/2) most significant digits of x. Then, x = x` + 2n/2 · xm. This
should suggest us a way to set up a divide and conquer strategy. . . :) Careful about the number
of subproblems!

Solution. 1. Using the hint, the idea is to split the n-bit integer into the first half and second
half: call these n/2-bit halves x and y, respectively. Then, we want to compute 2n/2x + y.
Continue calling the algorithm on x, y until they are of 1-bit each, at which point we return
the value itself.

2. Clearly the base cases of length 1 work, since 02 = 0 and 12 = 1. It suffices to show that
x = 2n/2xl + xr is correct, where xl, xr are as defined in the hint. Indeed, notice that

x = (xn, xn−1, · · · , x1)2
= (xn, · · · , xn/2+1, 0, · · · , 0)2 + (xn/2, · · · , x1)2
= (xn, · · · , xn/2 + 1, 0, · · · , 0)2 + xr

= 2n/2(xn, · · · , xn/2+1)2 + xr

= 2n/2xl + xr

since appending a zero to the end of a binary integer is equivalent to multiplying by 2 in dec-
imal and there are n/2 zeros. Thus, the algorithm properly handles base cases and correctly
combines the results from splitting.

3. Let T (n) denote the number of operations needed for an n−bit binary integer. I claim that

T (n) = 2T (n/2) +O(nlog2 3)

After splitting, the conversion of xl and xl into decimal clearly take T (n/2) each, yielding the
2T (n/2) term. As for the combine step, it suffices to determine the runtime of multiplying
2n/2 by xl, since addition is done in linear time, O(n).

To compute 2n/2, we can, say, repeatedly square starting at 2. This requires squaring
log2(n/2) = O(log n) times. Squaring is at worst multiplying two n/4-bit integers (in deci-
mal). In decimal, we have log10(2

n/4) = n/4 · log10(2) = O(n) digits, so multiplication takes

Divide & Conquer 3 Fall 2024

CSCI1570 Design and Analysis of Algorithms Lorenzo De Stefani

O(nlog2 3) time. We do this for n/8, n/16, etc, so the runtime is

O(nlog2 3 + (n/2)log2 3 + · · ·+ 1) = O(nlog2 3 +
1

3
nlog2 3 +

1

9
nlog2 3 + · · ·)

= O

(
1

1− 1/3
nlog2 3

)
= O(nlog2 3)

It remains to multiply 2n/2 and xl. However, both are n/2-bit integers, meaning the number
of digits in the decimal representation of xl and 2n/2 is

O(log10(2
n/2)) = O(n)

Multiplying two decimal integers with at most m digits takes O(mlog2 3) time, and since
each of xl and 2n/2 have at most O(n) digits, the multiplication takes O(nlog2 3) time. The
recurrence relation becomes

T (n) = 2T (n/2) +O(nlog2 3) +O(nlog2 3) = 2T (n/2) +O(nlog2 3)

We apply the Master theorem. Since log2(3) > log2(2) = 1, we have an instance of Case 3.
Indeed, setting δ = 2/3,

δnlog2 3 =
2

3
nlog2 3 = 2

nlog2 3

2log2 3
= 2(n/2)log2 3 = 2f(n/2)

as desired. By Master theorem, then, T (n) = Θ(nlog2 3), which is our overall runtime.

Divide & Conquer 4 Fall 2024

