
CSCI1570 Design and Analysis of Algorithms Lorenzo De Stefani

Solution 4: Dynamic Programming

Problem 1. You are given a roll (array) of n magical coins. Each coin has an initial value ci
which increases at each time step linearly. Therefore, at time step tj the coin has a value of cij.

You want to sell the coins to maximize your total profit, however, you are only able to sell the coins
one at a time. Furthermore, you are only able to sell the coins from either end of the roll of coins.

(a) You initially spring for a greedy approach to sell your magical coins, i.e. at each time step
you compare both ends of the array and sell the coin with least value. Is this strategy
flawed? Explain your reasoning.

(b) Design an algorithm which determines the optimal order to sell the magical coins to
maximize profit, given that you know the starting value of each coin. Your algorithm
should run in O(n2) time. Provide a proof of correctness for your algorithm, and justify
its runtime and memory utilization.

Solution.

(a) As a counterexample, consider a roll with the following coin values: 4, 3, 3, 1, 1, 5. The greedy
approach would yield a profit of 58 despite the fact that we can do better by removing all the
coins from the right, which would achieve a profit of 61.

(b)

Input: A list of integers representing the values of each coin
Output: The optimal selling order of the coins
1: function OptimalSellingOrder(coins)
2: Initialize ``dp'' to be a new 2D array with dimensions n and n
3: for i from 0 until n− 1 do . consider all subarray lengths
4: for j from 0 until n− i− 1 do
5: if i == 0 then
6: dp[j][j + i] = coins[j] ∗ (n− i)
7: else
8: dp[j][j+i] = Max(((n−i)∗c[j])+dp[j+1][j+i], ((n−i)∗c[j+i])+dp[j][j+i−1])
9: end if

10: end for
11: end for
12: return dp[0][n− 1]
13: end function

Proof of Correctness: We’ll induct over the predicate P (k) : our algorithm correctly computes
the maximum total profit for all rolls of length k.

Base Case: P (1) holds because the maximum profit we can make with a single coin is equal

Dynamic Programming 1 Fall 2024

CSCI1570 Design and Analysis of Algorithms Lorenzo De Stefani

to its value multiplied by the appropriate timestamp. This is handled in line 6.

Inductive Step: Suppose P (k) holds for some non-negative k. The maximum profit for any subarray
of length k+1 can be achieved by selling the left coin or right coin first and maximizing the profit
among the remaining k coins to the left or right of it, respectively. This logic is handled in line 8 of
our algorithm, and the recursive relationship holds because our inductive hypothesis holds, proving
P (k + 1).

Since our base case and inductive step both hold, P (k) holds for all non-negative k.

Time Complexity: Our algorithm fills every cell of the dp matrix in O(1) time, so it runs in
O(n2).

Memory Utilization: The memory bottleneck of our algorithm is the dp matrix, which uses
O(n2) space. Thus, the algorithm uses O(n2) space.

Dynamic Programming 2 Fall 2024

CSCI1570 Design and Analysis of Algorithms Lorenzo De Stefani

Problem 2. Given an unsorted array of n positive integers, your task is to remove the least number
of elements from the start or end of the array until twice the minimum of the array is larger than
the maximum.

(a) Design a dynamic programming algorithm which runs in O(n2) time. Provide a proof
of correctness for your algorithm, and justify its runtime and memory utilization.

(b) Suppose the integers are sorted in non-decreasing order. Design an algorithm that runs
in O(n) time. Provide a proof of correctness for your algorithm, and justify its runtime
and memory utilization.

Solution. (a) Consider the following algorithm:

Input: Array of n positive integers
Output: Least number of elements removed
1: function RemoveLeastElements(arr, n)
2: output ← n− 1
3: dp ← ARRAY[n][n][2] . each cell stores min and max num in subarray
4: for i from 0 until n− 1 do
5: for j from 0 until n− i− 1 do
6: if i == 1 then
7: dp[j][j + i][0], dp[j][j + i][1]← arr[j]
8: end if
9: if i 6= 1 then

10: dp[j][j + i][0]← min(dp[j + 1][j + i][0], dp[j][j + i− 1][0])
11: dp[j][j + i][1]← max(dp[j + 1][j + i][1], dp[j][j + i− 1][1])
12: if (2 ∗ dp[j][j + i][0]) > dp[j][j + i][1] then
13: output ← min(n− i− 1, output)
14: end if
15: end if
16: end for
17: end forreturn output
18: end function

Proof of Correctness:
Our algorithm uses dynamic programming to calculate the min / max of each subarray. If both
are computed correctly for each subarray, output must be the minimum number of elements
that we need to remove to satisfy the condition where twice the min is greater than the max.

To prove that each subarray stores the correct min / max, we’ll use induction over the predicate
P (k) : our algorithm correctly computes the min / max of all sub-arrays of length k.

Base Case: P (0) holds because a single element is both the minimum and maximum.

Inductive Step: Suppose P (k) holds for some non-negative k. For a subarray of length k + 1

Dynamic Programming 3 Fall 2024

CSCI1570 Design and Analysis of Algorithms Lorenzo De Stefani

starting at any valid index j ∈ 0, . . . , n− k − 1, the minimum of the overall subarray will be
the minimum of the k elements to the right of j and the k elements to the right of index j+ k.
The similar logic holds for the maximum. Our inductive hypothesis guarantees us that these
k-length subarrays have their minimums and maximums correctly computed, which proves that
P (k + 1) holds.

Since our base case and inductive step hold, P (k) holds for all non-negative k, which proves
that our overall algorithm is correct.

Time Complexity: Our algorithm performs a constant time computation for each of the
O(n2) entries in the dp tensor, which means that its runtime is O(n2).

Memory Utilization: The memory bottleneck of the algorithm is the dp tensor. Since each
cell holds a constant amount of space, the overall memory utilization of the algorithm is O(n2).

(b) Description: our algorithm uses a sliding window to find the largest subarray that satisfies
the condition that twice the smallest element is greater than the largest element. By default,
we initialize a left pointer, l, to point to arr[0] and set a right pointer, r, to point to the largest
number satisfying our condition (w/ arr[0] as the minimum). While both pointers are in the
bounds of the array, we consider the following cases:

(a) If the subarray satisfies the aforementioned condition (using the elements at the left and
right pointers), we update a global minimum variable with the number of elements we
need to remove to get that subarray. We then move the right pointer right.

(b) Otherwise, we move the left pointer right.

Proof of Correctness: we prove that our algorithm is correct by showing that it never prunes
the optimal solution (ie. the largest subarray satisfying the condition):

(a) If a subarray satisfies the condition, we can only get a larger subarray that is also valid
by moving the right pointer right. Moving the right pointer left or the left pointer right
would only yield a smaller (sub-optimal) subarray. Moving the left pointer left would
bring us back to a subarray that we’ve previously considered.

(b) Otherwise, the subarray does not satisfy the condition, so we can only get a valid subarray
by moving the left pointer right. Moving the right or left pointer left would bring us back
to previously considered subarrays. Moreover, moving the right pointer right can only
increase the subarray’s maximum element, which cannot possibly make it valid.

Since the largest subarray satisfying the condition is never pruned, our algorithm is guaranteed
to return an optimal solution.

Time Complexity: In every iteration of our loop, we either move the left or right pointer
right and perform some constant time operations. Since the left and right pointers traverse
O(n) elements each, the loop performs O(2n) = O(n) iterations.

Memory Utilization: We use a constant amount of space for the global minimum variable
(the output) and the left / right pointers. Thus, we use O(1) memory.

Dynamic Programming 4 Fall 2024

CSCI1570 Design and Analysis of Algorithms Lorenzo De Stefani

Problem 3. You are in charge of a botanical garden, and you’re designing a pathway where
visitors can admire a sequence of unique flower beds arranged in strictly increasing order of their
charm. Each flower bed currently has a charm rating stored in the array A.

There is a problem; the current order of these ratings is not strictly increasing, which could
disrupt the visitor experience. To correct this, you have access to a nursery full of replacement
flowers, each with its own charm rating stored in another array, B. In one operation, you can
choose any flower bed along the path and replace its charm rating with one from the nursery. It is
guaranteed that |B| ≥ |A|.

(a) Design a dynamic programming algorithm that determines the minimum number of op-
erations to ensure the charm ratings in A are strictly increasing.

(b) Provide a proof of correctness of your algorithm.

(c) Justify your algorithm’s runtime and memory utilization.

Solution. (a) Consider the following algorithm:

Algorithm 1 StrictlyIncreasingArr
Input: A, B
Output: The minimum number of operations needed to ensure that A is strictly

increasing
1: function makeIncreasing(arr1, arr2)
2: sort B
3: dp = [{}] ∗ |A|
4: dp[0][A[0]] = 0;
5: dp[0][B[0]] = 1;
6: for i in range(1, |A|) do
7: newdict = {}
8: for prev in dp[i - 1] do
9: if A[i] > prev then

10: dp[i][A[i]] = min (dp[i][A[i]], dp[i - 1][prev]
11: end if
12: k = bisectright(B, prev)
13: if k < len(B) then
14: dp[i][B[k]] = min(dp[i][B[k]], 1 + dp[i - 1][prev])
15: end if
16: end for
17: end forreturn min(dp[|A| - 1].values) if dp else -1
18: end function

(b) The general idea of the algorithm is to build the possible solutions as we iterate over A, and
consider swapping/keeping at each step. Each dp[i][prev] will store the minimum number of
swaps needed to sort the first i+ 1 flowers of A such that the A[i] = prev.

Dynamic Programming 5 Fall 2024

CSCI1570 Design and Analysis of Algorithms Lorenzo De Stefani

We induct on i to prove that dp stores exactly what we want it to. The base case is either we
keep the first element, in which case there are 0 swaps, or we make one swap. In this case,
it only makes sense to swap with the smallest element of B, which we know to be B[0] after
sorting. Suppose the algorithm holds after i = k iterations. On the k + 1st iteration, consider
each value prev ∈ dp[k]. If A[k + 1] > prev, we know that a swap is not needed as we are
guaranteed the first k elements are sorted. Thus, we can achieve sorting the first k+1 elements
in dp[k][prev] swaps, which is what we have in line 10.

The next case to consider is swapping: if we are to swap, we need to swap with an element
that has value greater than prev. It only makes sense to swap with the smallest element in B
that is greater than prev: this is precisely binary search! In our algorithm, we use Python’s
bisect library to achieve this. In this case, getting the first k+ 1 elements sorted with A[k+ 1]
as our new value from B takes dp[k][prev] + 1 swaps, which is reflected in line 14. Therefore,
the given form of the algorithm correctly computes the minimum number of swaps needed to
reach all the states we are considering.

To finish, we know that dp[|A| − 1] holds the minimum number of swaps to sort the first |A|
values with a fixed value of A[|A| − 1]. We seek the minimum over all these values, which
corresponds to min(dp[|A| − 1].values), as desired.

(c) The initial sorting of B runs in O(|B| log |B|). At each step, we iterate through the dictionary’s
keys, of which there are at most |B| + 1 (the value of prev can only be an element of B or
the array element itself. At each step, we perform constant time computations and one binary
search on B, so the runtime of the main logic is O(|A||B| log |B|). Thus, the runtime is

O(|B| log |B|) +O(|A||B| log |B|) ∈ O(|A||B| log |B|)

The memory utilization is |A| dictionaries of size at most |B|+1, as mentioned in the previous
paragraph. This gives a memory usage of O(|A||B|).

Dynamic Programming 6 Fall 2024

