
CSCI1570 Design and Analysis of Algorithms Lorenzo De Stefani

Solution 3: Greedy Algorithms

Problem 1. Recall that a set of vectors {v1, v2, . . . , vn} is called linearly independent if the
only solution to the equation

c1v1 + c2v2 + · · ·+ cnvn = 0

is c1 = c2 = · · · = cn = 0. In other words, the vectors are linearly independent if no vector in the
set can be written as a linear combination of the others.

A spanning set is a collection of vectors that can be combined through linear combinations
to generate every element of the vector space.

Finally, a basis is a linearly independent set that spans the vector space. This implies that
every vector in the space can be expressed uniquely as a linear combination of the basis vectors.

Let M be an n×m matrix. Let R be the set of rows of M . Let ` be a subset of P(R) such that

` = {A : A ⊂ R,A linearly independent}.

(a) Show that (R, `) is a matroid.
Hint: It might be helpful to consider components.

(b) Let w : `→ R+ be a function assigns to each subset A ⊂ R its cardinality, i.e., w(A) = |A|.
To be consistent with the lecture notes, we also define w as a function of R: w(v) = 1
for every v ∈ R. Observe that w(A) = |A| =

∑
v∈Aw(v).

Let IsLinearlyIndependent be a predicate that checks whether a subset of R is linearly
independent or not. Assume this algorithm runs in O(T) time.
Design an efficient algorithm to find a basis of the vector space spanned by R. Prove the
correctness/optimality of your algorithm and analyze an asymptotically tight runtime.

Solution.

(a) To show that (R, `) is a matroid we have to verify that

(1) R is a finite set.
(2) For every B ∈ `, if A ⊆ B then A ∈ `.
(3) For every A,B ∈ `, if |A| < |B| then there exists an x ∈ B \A such that A∪{x} ∈ `.

The first condition clearly holds since R is the set of rows of a finite matrix (|R| = n <∞).
The second condition also holds since any subset of a linearly independent set is

linearly independent. Suppose, for the sake of contradiction, that a vector can be written
as a linear combination of the others in A. Then the same vector can clearly be written
as a linear combination in B.

We now verify the final condition. Let A,B ∈ ` be two linearly independent subsets
of R such that |A| < |B|. Suppose, for the sake of contradiction, that for every v ∈ B \A,
the set A ∪ {v} is linearly dependent. Then B \ A ⊂ span(A). Moreover, A ⊂ span(A).

Greedy Algorithms 1 Fall 2024

CSCI1570 Design and Analysis of Algorithms Lorenzo De Stefani

Hence, B ⊂ span(A). We know that span(A) is at most |A|-dimensional, which means
that any linearly independent set of span(A) will have at most |A| elements. However, B
is a linearly independent set of span(A) with |B| > |A| elements, which is a contradiction.
Thus, there exists v ∈ B \A such that A ∪ {v} is linearly independent.

(b) We’ll modify the algorithm presented in lectures 5 and 6 using the knowledge that (R, `, w)
is a weighted matroid.

Algorithm 1 Basis of the vector space spanned by R

Input: A set of vectors, R
1: A weight function, w : R→ R+

Output: Basis of the vector space spanned by R
2: function Basis(R, w)
3: Initialize A to be an empty set
4: for v ∈ R do
5: if IsLinearlyIndependent(A ∪ {v}) then
6: Add v to A
7: end if
8: end for
9: return A

10: end function

(c) The correctness of this algorithm in the case that (R, `, w) is a weighted matroid was
shown in class!

We loop through each of the n vectors in the set and perform an O(T) check to
see if the resulting set is linearly independent. Therefore, the overall runtime of this
algorithm is O(Tn).

Greedy Algorithms 2 Fall 2024

CSCI1570 Design and Analysis of Algorithms Lorenzo De Stefani

Problem 2. The power lines along a country road have been modified to carry broadband Internet.
Wi-Fi towers are being built along the road to provide the community with internet. To find the
minimum number of towers required so that each house is sufficiently close to at least one tower,
we model the problem as follows:

a) The entire course staff has taken up residence on Algorithm Street. The diagram below shows
where they all live on the street.

Omer lives 5 miles down the road, Nam lives 13 miles down the road, and so on. Wi-Fi towers
have an effective radius of 5 miles. Determine the minimum number of Wi-Fi towers needed
such that each staff member has internet, and give the locations for these towers as well.

b) We’re given a line segment `, a set of non-negative numbers N that represents the locations
of customers on `, and a distance d. We wish to find a set of Wi-Fi towers of minimal size on
` such that each location in N is at most d away from some tower. Give an efficient greedy
algorithm that returns a minimum size set of points. Prove its correctness and justify its
runtime.

Now we generalize our model to account for houses that are not by the side of the road.

c) We’re given a line segment `, a set of pairs N representing the locations of customers, and a
distance d. For each pair (x, y) ∈ N , let x ∈ [0,∞) be the distance along ` and y ∈ [−d, d] be
the distance above or below `. We wish to find a set of Wi-Fi towers of minimal size on ` such
that each location in N is at most distance d from some tower (here, we are using Euclidean
distance).

Modify your algorithm from part (b) to solve this variation of the problem. You do not need
to prove its correctness, but please explain how your proof from part (b) would (or would
not) need to change based on your modifications.

Can we generalize further?

d) Does the correctness of your algorithm depend on the fact that ` is a line segment and not
some curve? If so, give an example that illustrates the problem with your algorithm when `
is a curve. If not, explain how your algorithm could handle a curve. You shouldn’t be writing
another algorithm, or modifying your existing algorithm, just explain your reasoning.

Solution. a) We position 3 Wi-Fi towers within the ranges [8, 10], [20, 23], and [29, 39] such that

Greedy Algorithms 3 Fall 2024

CSCI1570 Design and Analysis of Algorithms Lorenzo De Stefani

no two are placed within the same interval.

b) We will use a greedy algorithm to place the towers. The idea is to place each tower at the
farthest possible location that covers the most uncovered customers.
Sort the customer locations in N in increasing order. Let N = {n1, n2, . . . , nk} where n1 ≤ n2 ≤
· · · ≤ nk. Begin with the first customer in the sorted list. Since this customer is uncovered, place
a tower at the farthest point that can still cover this customer. Specifically, place the tower at
n1 + d (since the tower covers up to a distance d). After placing a tower, skip all customers
that are within d units of the current tower. Then repeat the process for the next uncovered
customer. Terminate when all customers are covered (end of list reached).
Below is the pseudocode:

Algorithm 2 Minimum Number of Wifi Towers
Input: A set of nonnegative numbers N representing locations of customers and

nonnegative distance d
Output: Minimum number of wifi towers guaranteeing full coverage
1: function findLocations(N, d)
2: Sort(N)
3: towers ← 0
4: i← 0
5: n← length(N)
6: while i < n do
7: towers + = 1
8: tower_location ← N [i] + d
9: while i < n and N [i] ≤ tower_location +d do

10: i+ = 1
11: end while
12: end while
13: return towers
14: end function

Proof of correctness: We argue correctness using the greedy exchange argument.
Let G be the greedy solution in sorted order, and let gi be the position of the i-th tower placed
by the greedy algorithm. Similarly, let O be any optimal solution in sorted order, and let oi be
the position of the i-th tower placed by the optimal solution.
Suppose G 6= O; that is, G and O differ in their tower placements. Let t be the smallest index
such that gt 6= ot. Up to index t− 1, the greedy solution and the optimal solution place towers
at the same positions: gi = oi for all i < t. Let a ∈ N be the leftmost customer not covered by
the first t − 1 towers (i.e., by g1, . . . , gt−1). Since G and O agree on the first t − 1 towers, a is
the same for both solutions.
The greedy algorithm places the t-th tower at gt = a+ d. The coverage interval of this tower is
[a, a+ 2d].
The optimal solution places the t-th tower at ot 6= gt. Since ot must cover customer a, it must
satisfy ot ∈ [a− d, a+ d].
Replace ot with gt in O to form a new solution O′ without increasing the number of towers or
decreasing coverage. All customers to the left of a are already covered by the first t− 1 towers
in both G and O. Since gt ≥ ot, gt covers all the customers to the right of a that ot covers.

Greedy Algorithms 4 Fall 2024

CSCI1570 Design and Analysis of Algorithms Lorenzo De Stefani

We have now decreased the number of differences between G and O by performing the exchange.
By iterating this exchange we can turn O into G without impacting the quality of the solution.
Therefore, G must be optimal.
Since any optimal solution O can be transformed into the greedy solution G through a series of
exchanges that do not increase the number of towers or reduce coverage, the greedy solution G
must be optimal.
Runtime Justification: Sorting the list of customer locations takes O(n log n), where n = |N |.
Placing the towers and moving through the list takes O(n), since we go through the list of
customers exactly once.
Thus, the overall time complexity of the algorithm is O(n log n).

c) Algorithm description: For each customer (xi, yi), calculate hi =
√
d2 − y2i . Then determine

the interval [li, ri] = [xi − hi, xi + hi]. This interval represents all possible positions along `
where a tower can be placed to cover customer i. Then sort the intervals [li, ri] in increasing
order of their right endpoints ri. Create an empty list S to store tower positions. While there
are intervals not yet covered, select the interval with the earliest right endpoint. Let [li, ri] be
the interval with the smallest right endpoint ri. Place a tower at position s = ri and add s to S.
Remove all intervals [lj , rj] where lj ≤ s. These are the intervals that are covered by the tower
at s. Finally, return the size of S.
Below is the pseudocode:

Algorithm 3 Generalized Minimum Number of Wifi Towers
Input: A set of pairs N representing locations of customers where (x, y) ∈ N has

x ≥ 0 and y ∈ [−d, d] and nonnegative distance d
Output: Minimum number of wifi towers guaranteeing full coverage
1: function findGeneralizedLocations(N, d)
2: Initialize list Intervals
3: for (xi, yi) ∈ N do
4: hi ← sqrt(d2 − y2i)
5: li ← xi − hi
6: ri ← xi + hi
7: Add interval [li, ri] to Intervals
8: end for
9: Sort Intervals in increasing order of right endpoints ri

10: Initialize empty list S
11: while Intervals is not empty do
12: Let [li, ri] be the first interval in Intervals
13: Place a tower at position s = ri
14: Add s to S
15: Remove all intervals [lj , rj] from Intervals where lj ≤ s
16: end while
17: return |S|
18: end function

Modification of the Proof from Part (b): The proof from part (b) needs to be adjusted
for part (c) because customers are no longer points on the line but have coverage intervals
along the line segment due to their positions above or below it. In part (c), each customer

Greedy Algorithms 5 Fall 2024

CSCI1570 Design and Analysis of Algorithms Lorenzo De Stefani

defines an interval of feasible tower positions where they can be covered, turning the problem
into an interval covering problem. Therefore, the exchange argument must account for these
intervals rather than fixed points. The modified proof demonstrates that placing towers at the
right endpoints of the earliest finishing intervals (as per the greedy algorithm) remains optimal.
The exchange moves involve replacing towers in any optimal solution with those chosen by the
greedy algorithm, ensuring coverage of the same or more intervals without increasing the number
of towers. Thus, while the core structure of the proof—the exchange argument—remains the
same, it adapts to consider intervals instead of individual points to establish the optimality of
the modified algorithm.

d) The correctness of the algorithm depends on the fact that ` is a line segment. Consider the
unit circle. If a customer is located at (−1, 0), the algorithm from part c) would attempt to
place a Wi-Fi tower as far to the right of the customer as possible while staying within the
allowed distance d. However, since the circle has two locations (one on the upper semicircle and
one on the lower semicircle) that are equidistant from the customer, the algorithm could place
the tower in either direction, potentially missing other customers or having to place additional
towers. This ambiguity does not arise with a line segment because each location has only one
direction that extends to the rightmost distance without looping back. Thus, the correctness of
the algorithm in c) relies on ` being a line, and the approach may not generalize correctly for
non-linear curves.

Greedy Algorithms 6 Fall 2024

