
CSCI1570 Design and Analysis of Algorithms Lorenzo De Stefani

Solution 1: Introduction to Proofs

This homework must be typed in LATEX and submitted via Gradescope.

Please ensure that your solutions are complete, concise, and communicated clearly. Use full sen-
tences and plan your presentation before your write. Except where indicated, consider every prob-
lem as asking for a proof.

Problem 1. Let f : A → B and g : B → C be functions. Prove or disprove the following
statement:

If g ◦ f is bijective, then f is injective and g is surjective.

Solution. This statement is true . If you want a non-trivial example of two functions satisfying f
and g (at least one that doesn’t make f and g both bijective), let A = C = R and B = R2. Then
with f and g defined as follows we have that,

f(x) := (x, 0)

g(x, y) := x

g ◦ f is the identity map. However, showing this example isn’t enough to show that this is always
the case, but it does provide nice intuition!

Proving f is injective. Suppose, for the sake of contradiction that f is not injective. Then, there
exists two values x, y ∈ A such that x 6= y but f(x) = f(y). Therefore, we have that

(g ◦ f)(x) = g(f(x)) = g(f(y)) = (g ◦ f)(y)

Therefore, g ◦ f is not injective, which contradicts the assumption that the map is bijective. Thus,
f must be injective.

Proving g is surjective. Suppose, for the sake of contradiction that g is not surjective. Then,
there exists a value c ∈ C such that for all b ∈ B, g(b) 6= c. Therefore, there exists no a ∈ A such
that (g ◦ f)(a) = c, which contradicts the assumption that the map is bijective. Thus g must be
surjective.
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Problem 2. Prove or disprove the following statement:

The sum of a rational number and an irrational number is irrational.

Solution. The statement is true . Let a be a rational number and b be an irrational number. For
the sake of contradiction, suppose that a+ b is rational. Because a, a+ b are rational, they can be
written as a = m/n and a+ b = x/y for integers m,n, x, y (such that n, y 6= 0). Then,

m

n
+ b =

x

y

b =
x

y
− m

n

b =
xn− ym

yn

Because m,n, x, y are integers, xn−ym and yn are integers. Furthermore, yn is non-zero due to the
assumption that n, y 6= 0, so by the definition of rational numbers, b is rational. This contradicts
the fact that b is irrational, which means our original assumption that a+ b is rational is false.
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Problem 3. Prove or disprove the following statement:

The square for every odd number can be expressed as 8k + 1 for some integer k.

Solution. The statement is true . Let n be odd: this means that it can be expressed n = 2m+ 1,
for some integer m. Squaring,

n2 = (2m+ 1)2 = 4m2 + 4m+ 1.

Factoring out the 4, we can rewrite this as

n2 = 4(m2 +m) + 1.

Consider m2+m: this can be factored as m(m+1), which is a product of two consecutive integers.
Because they are consecutive, this is a product of an even and odd integer, which is always even.
Therefore, we can find some integer k so that m(m+ 1) = 2k. Plugging this back in,

n2 = 4(m2 +m) + 1

n2 = 4(2k) + 1

n2 = 8k + 1

which is exactly the statement we want to prove.
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Problem 4. You are given a rectangular chocolate bar with m× n squares of chocolate, and our
task is to divide it into mn individual squares. You are only allowed to split one piece of chocolate
at a time using a vertical or a horizontal break. For example, suppose that the chocolate bar is
2 × 2. The first split makes two pieces, both 2 × 1. Each of these pieces requires one more split
to form single squares. This gives a total of three splits. Use an induction argument to prove the
correctness of the following statement:

mn− 1 splits are sufficient to divide a rectangular chocolate bar with m× n squares into
individual squares.

Solution. Strong induct on the size of the chocolate bar, mn. Let P (m,n) be the proposition that
a chocolate bar with m× n squares requires at most mn− 1 splits.

Base Case: The base case is mn = 1, or m = n = 1. This holds trivially because we already start
with an individaul square, so 0 = 1 · 1− 1 splits are needed.

Inductive Hypothesis: Suppose that P holds on all m,n satisfying mn ≤ k.

Induction Step: We want to show that P holds for all m,n satisfying mn = k+1. Since k+1 > 1,
one of m,n must be greater than 1: without loss of generality, take m > 1. Then, split along any
horizontal break to split the bar into a p× n and q × n piece, where p+ q = m and p, q > 1. Now,
we have two chocolate bars with size pn, qn < mn = k + 1. This is the same as pn, qn ≤ k, so we
can apply the inductive hypothesis and conclude that it is possible to split the p × n and q × n
chocolate bar in at most pn − 1 and qn − 1 moves, respectively. We now have a way to split the
m× n bar in at most

1 + (pn− 1) + (qn− 1) = (p+ q)n− 1 = mn− 1

splits. Thus, we have shown P (m,n) is true for all m,n satisfying m× n = k+1, which completes
the induction.
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Problem 5. Consider the algorithm given as pseudocode below:

1. What is the output of the algorithm? Provide an informal but precise description.

2. Prove the correctness of the algorithm.

3. Analyze the running time of the algorithm.

Algorithm 1 ?-?
Input: An n-vertex graph represented by an adjacency matrix D, where D[i][j] is
the non-negative weight of the edge from vertex i to vertex j, for 0 ≤ i, j < n.
If there is no edge connecting i and j, D[i][j] =∞.
Output: ?
for i← 0 to n− 1 do . Initialization solution

for j ← 0 to n− 1 do
S[i][j]← D[i][j]

end for
end for
for k ← 0 to n− 1 do

for i← 0 to n− 1 do
for j ← 0 to n− 1 do

S[i][j]← min{S[i][j],S[i][k] + S[k][j]}
end for

end for
end for

Solution. 1. The algorithm returns a matrix S, where S[i][j] represents the weight of the shortest
path between i and j in the graph represented by D (where we view weights here as distance).

Remark: This algorithm is known as the Floyd Warshall algorithm.

2. Here, we choose to induct on k in the outermost for-loop in the main logic. The claim is
that after the mth iteration, S[i][j] will represent the length of the shortest path from i to j
that uses only the vertices {0, · · · ,m − 1} as intermediate vertices. Formally, if our path is
{p0, p1, · · · , pd}, where p0 = i and pd = j, then p1, · · · , pd−1 ∈ {0, · · ·m− 1}.

For the base case of k = 1, we wish to show that S[i][j] is the shortest path from i to j passing
through only 0 as an intermediate vertex. This is true: if the path uses 0 as an intermediate
vertex, it must look like i→ 0→ j, so this is represented by S[i][0] + S[0][j]. Then, we take
the minimum with the current value of S[i][j], which is the weight of the edge from i to j,
meaning S[i][j] now holds the length of the shortest path from i to j with all intermediate
vertices in the set {0}.

Now suppose the hypothesis holds for the mth iteration. We wish to show that it holds
after the m + 1th iteration. If we don’t pass through vertex m at all, then the shortest
path is precisely S[i][j], since now the intermediate vertex set is limited to {0, · · · ,m − 1}.
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Suppose now that the path passes through m. It is clear that we don’t want any cycles in
this path, so the path from i to m and the path from m to j must not pass through m again.
However, this means that the intermediate vertices from i → m and m → j are precisely
in the set {0, · · · ,m − 1}! This means we can use the inductive hypothesis and conclude
the shortest length path from i → m is S[i][m] and from m → j is S[m][j]. Thus, in the
case that we pass through m, the shortest distance is S[i][m] + S[m][j]. Therefore, setting
S[i][j] = min{S[i][j], S[i][m]+S[m][j]} properly represents the shortest path from i to j using
only intermediate vertices from {0, · · · ,m}, completing the induction.

To finish, we note that after all the iterations of the outermost for-loop, S[i][j] represents the
shortest path between i and j using intermediate vertices in {0, · · · , n− 1}. This is now the
entire vertex set in our graph, so it is the same as the shortest path between i and j in the
graph, as claimed in (a).

3. The running time of the algorithm is O(n3): the initialization of S requires two nested for
loops, which is O(n2), and the main logic of the algorithm is a triple nested for loop with
an O(1) operation in each loop, which means it is in O(n3). Thus, the overall runtime is
O(n2) +O(n3) ∈ O(n3).
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