Homework 10: Complexity Theory

Due: November 25, 2025

Problem 1. Compute the 3-CNF equivalent of the Boolean expression

$$x_1 \cap (x_3 \cup x_2 \cup \bar{x_1} \cup x_6) \cap (x_2 \cup \bar{x_3}) \cap (x_7 \cup x_3 \cup \bar{x_1}).$$

Prove that the two expressions are Boolean equivalent.

Solution. Let us rewrite the expression using \wedge for AND, \vee for OR, and \neg for NOT:

$$F = x_1 \wedge (x_3 \vee x_2 \vee \neg x_1 \vee x_6) \wedge (x_2 \vee \neg x_3) \wedge (x_7 \vee x_3 \vee \neg x_1).$$

We want an equisatisfiable 3-CNF formula

We can frame existing clauses into 3-CNF format:

• The unit clause x_1 is equivalent to

$$(x_1 \lor x_1 \lor x_1).$$

• The two-literal clause $(x_2 \vee \neg x_3)$ is equivalent to

$$(x_2 \vee \neg x_3 \vee x_2).$$

• The three-literal clause $(x_7 \vee x_3 \vee \neg x_1)$ is already in 3-CNF form.

For the 4-lliteral clause: Consider the clause

$$C := (x_3 \lor x_2 \lor \neg x_1 \lor x_6).$$

Introduce an auxiliary variable y and replace C by the conjunction

$$C' := (x_3 \lor x_2 \lor y) \land (\neg y \lor \neg x_1 \lor x_6).$$

Each of these clauses has exactly 3 literals, so they are in 3-CNF.

We now define the 3-CNF formula:

$$\Phi = (x_1 \lor x_1 \lor x_1) \land (x_3 \lor x_2 \lor y) \land (\neg y \lor \neg x_1 \lor x_6) \land (x_2 \lor \neg x_3 \lor x_2) \land (x_7 \lor x_3 \lor \neg x_1).$$

Equisatisfiability: We claim that F and Φ are *equisatisfiable* (they agree on the existence of a satisfying assignment for the original variables x_1, \ldots, x_7).

• (F satisfiable $\Rightarrow \Phi$ satisfiable) Let α be a satisfying assignment for x_1, \ldots, x_7 such that $F(\alpha) = T$. In particular,

$$C(\alpha) = (x_3 \lor x_2 \lor \neg x_1 \lor x_6)(\alpha) = T.$$

There are two cases:

- If $(x_3 \vee x_2)(\alpha) = T$, set y = F. Then

$$(x_3 \lor x_2 \lor y)(\alpha, y) = T, \quad (\neg y \lor \neg x_1 \lor x_6)(\alpha, y) = (T \lor \dots) = T.$$

- If $(x_3 \vee x_2)(\alpha) = F$, then either $\neg x_1$ or x_6 is true under α . Set y = T. Then

$$(x_3 \lor x_2 \lor y)(\alpha, y) = T$$
, $(\neg y \lor \neg x_1 \lor x_6)(\alpha, y) = (F \lor \neg x_1 \lor x_6)(\alpha) = T$.

In both cases, we can extend α to α' on (x_1, \ldots, x_7, y) such that all clauses in Φ are satisfied. Thus Φ is satisfiable.

• $(\Phi \ satisfiable \Rightarrow F \ satisfiable)$

Let β be a satisfying assignment for (x_1, \ldots, x_7, y) with $\Phi(\beta) = T$. Then the two clauses replacing C,

$$(x_3 \lor x_2 \lor y), \quad (\neg y \lor \neg x_1 \lor x_6),$$

are both true under β . If $(x_3 \vee x_2)(\beta)$ is true, then clearly $C(\beta)$ is true. Otherwise, $(x_3 \vee x_2)(\beta)$ is false, so

$$(x_3 \lor x_2 \lor y)(\beta) = T \implies y(\beta) = T,$$

and then

$$(\neg y \lor \neg x_1 \lor x_6)(\beta) = T \implies (\neg x_1 \lor x_6)(\beta) = T.$$

Hence at least one of $x_3, x_2, \neg x_1, x_6$ is true, so $C(\beta)$ is true. The other clauses of F are just the padded versions of those in Φ , so they also hold under the restriction of β to x_1, \ldots, x_7 . Thus F is satisfiable whenever Φ is.

Therefore F and Φ are equisatisfiable, and Φ is a 3-CNF form of F.

Problem 2. A vertex cover of a graph G = (V, E) is a set of vertices $D \subseteq V$ that includes at least one endpoint of every edge of the graph.

The k-vertex-cover problem is the decision problem: does a graph G(V, E) have a vertex cover of size k?

Prove the k-vertex-cover problem is NP-complete. [Hint: prove that G has a k-vertex-cover iff G has an independent set of size |V| - k.]

Solution. We consider the language

$$VERTEX-COVER = \{ \langle G, k \rangle \mid G \text{ has a vertex cover of size } \leq k \}.$$

• k-VERTEX-COVER is in NP"

A certificate for an instance $\langle G, k \rangle$ is a subset $D \subseteq V(G)$ with $|D| \leq k$. The verifier:

- 1. checks that $|D| \leq k$;
- 2. for each edge $(u, v) \in E(G)$, checks that $u \in D$ or $v \in D$.

This takes O(|V| + |E|) time, which is polynomial. Thus k-VERTEX-COVER $\in NP$.

• NP-hardness via reduction from INDEPENDENT-SET:

Recall:

INDEPENDENT-SET =
$$\{\langle G, \ell \rangle \mid G \text{ has an independent set of size } \geq \ell \}$$

is NP-complete.

Using: For any graph G = (V, E) and $D \subseteq V$,

D is a vertex cover $\iff V \setminus D$ is an independent set.

Proof:

- (\Rightarrow) Suppose D is a vertex cover. Then every edge has at least one endpoint in D. If there were an edge (u, v) with both endpoints in $V \setminus D$, that edge would have no endpoint in D, contradicting that D is a vertex cover. Hence there is no edge with both endpoints in $V \setminus D$, so $V \setminus D$ is independent.
- (\Leftarrow) Suppose $I = V \setminus D$ is an independent set. Then no edge has both endpoints in I. So every edge must have at least one endpoint in D, i.e., D is a vertex cover.

Taking sizes, we get:

 \exists vertex cover D with $|D| \leq k \iff \exists$ independent set I with $|I| \geq |V| - k$.

Reduction: Given an instance $\langle G, \ell \rangle$ of INDEPENDENT-SET, construct the instance

$$\langle G, k \rangle$$
 where $k = |V(G)| - \ell$

of VERTEX-COVER. This transformation is clearly polynomial-time.

By the lemma,

 $G \text{ has an independent set of size } \geq \ell \iff G \text{ has a vertex cover of size } \leq |V| - \ell = k.$

Thus $\langle G,\ell \rangle \in \mathsf{INDEPENDENT}\text{-SET}$ iff $\langle G,k \rangle \in \mathsf{VERTEX}\text{-COVER},$ so

 $\mathsf{INDEPENDENT}\mathsf{-SET} \leq_p \mathsf{VERTEX}\mathsf{-COVER}.$

Since k-VERTEX-COVER is in NP and NP-hard, it is NP-complete.

Problem 3. Given a set of numbers $S = \{s_1, \ldots, s_n\}$, the PARTITION problem is to decide whether there is a set $T \subset S$ such that

$$\sum_{s \in T} = \sum_{s \in S \setminus T}.$$

Prove that the PARTITION problem is NP-complete.

[Hint: Reduce SUBSET-SUM(X,t) to PARTITION. Add one new number q to S such that there is a partition of $X \cup \{q\}$ iff there is a solution to SUBSET-SUM(X,t).]

Solution. We consider

 $\mathsf{PARTITION} = \left\{ S \mid S \text{ can be split into two subsets of equal sum} \right\}.$

• PARTITION is in NP:

A certificate is a subset $T \subseteq S$. The verifier:

- 1. computes $a = \sum_{s \in T}$ and $b = \sum_{s \in S \setminus T}$;
- 2. checks that a = b.

Both sums can be computed in time polynomial in |S| and the input size, so PARTITION \in NP.

• NP-hardness via reduction from SUBSET-SUM (from hint) Recall:

 $\mathsf{SUBSET\text{-}SUM} = \{\langle X, t \rangle \mid X \text{ is a multiset of numbers and there exists } Y \subseteq X \text{ with } \sum_{y \in Y} = t\}$

is NP-complete.

Let $\langle X, t \rangle$ be an instance of SUBSET-SUM, where

$$X = \{x_1, \dots, x_n\}.$$

Let

$$s = \sum_{i=1}^{n} x_i$$

and define one additional number

$$q = s - 2t$$
.

Construct the PARTITION instance

$$S' = X \cup \{q\}.$$

This construction is clearly polynomial-time.

Correctness of the reduction:

We must show:

$$\langle X, t \rangle \in \mathsf{SUBSET}\text{-SUM} \iff S' \in \mathsf{PARTITION}.$$

 $- (\Rightarrow)$ Suppose there exists $Y \subseteq X$ with

$$\sum_{y \in Y} = t.$$

Let $Z = X \setminus Y$, so $\sum_{z \in Z} = s - t$. Consider the subset

$$T = Y \cup \{q\} \subset S'$$
.

Then

$$\sum_{u \in T} = \sum_{y \in Y} +q = t + (s - 2t) = s - t,$$

while

$$\sum_{u \in S' \backslash T} = \sum_{z \in Z} = s - t.$$

Thus S' can be partitioned into T and $S' \setminus T$ of equal sum, so $S' \in \mathsf{PARTITION}$.

– (\Leftarrow) Suppose S' has a partition into two subsets of equal sum; that is, there exists $T \subseteq S'$ such that

$$\sum_{u \in T} = \sum_{u \in S' \setminus T}.$$

Let the total sum of S' be

$$\Sigma = \sum_{u \in S'} u = s + q = s + (s - 2t) = 2s - 2t.$$

Then each side of the partition has sum

$$\Sigma/2 = s - t$$
.

Observe that q must lie in exactly one of the two parts. Without loss of generality assume $q \in T$. Then we can write

$$T = Y \cup \{q\}, \text{ with } Y \subseteq X.$$

Hence

$$\sum_{u \in T} = \sum_{y \in Y} +q = s-t.$$

Plugging in q = s - 2t gives

$$\sum_{u \in Y} +(s-2t) = s-t \quad \Rightarrow \quad \sum_{u \in Y} = t.$$

Therefore $Y \subseteq X$ is a subset whose elements sum to t, so $\langle X, t \rangle \in \mathsf{SUBSET}\text{-}\mathsf{SUM}$.

Since PARTITION is in NP and NP-hard, it is NP-complete.